Executive summary
library(tidyverse)
library(lubridate)
library(plotly)
theme_set(theme_bw(18) +
theme(legend.position = "bottom"))
Loading data
filenames = c("forest.csv", "forest_area.csv", "brazil_loss.csv",
"soybean_use.csv", "vegetable_oil.csv")
online_files = paste0("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-04-06/",
filenames)
purrr::map2(
.x = filenames,
.y = online_files,
.f = ~ download.file(url = .y, destfile = .x)
)
# brazil_loss <- readr::read_csv('brazil_loss.csv')
# soybean_use <- readr::read_csv('soybean_use.csv')
forest <- readr::read_csv('forest.csv')
# forest_area <- readr::read_csv('forest_area.csv')
# vegetable_oil <- readr::read_csv('vegetable_oil.csv')
subforest = forest %>%
dplyr::filter(net_forest_conversion != 0) %>%
tidyr::complete(expand(., nesting(entity, code), year),
fill = list(net_forest_conversion = NA)) %>%
dplyr::mutate(net_forest_conversion_log10 = sign(net_forest_conversion)*log10(abs(net_forest_conversion)))
# subforest %>% glimpse()
write_csv(x = subforest, file = "./subforest.csv")
Plotly visualisation with slider
fig <- plot_ly(
subforest,
type = 'choropleth',
locations = ~code,
z = ~net_forest_conversion_log10,
text = ~entity,
frame = ~year,
colors = "RdYlGn") %>%
layout(
geo = list(projection = list(type = "orthographic")),
showlegend = FALSE)
fig