Kevin Wang

Dimensional Reduction

Acknowledgement

A large proportion of this material was adapted from the Honours thesis of Nelson Ma, formerly at the School of Mathematics and Statistics, the University of Sydney.

Dimensional reduction

- High dimensional data are tricky:
 - Correlation between variables could contain redundant information
 - Humans eyes are not great beyond 3 dimensions
 - Humans brains are not great at handling non-linear relationships

Reduce the dimension of our data, while **preserving** one key characteristic

PCA

- Decompose the correlation matrix $\Sigma = U \Lambda U^{+}$
- Create a score matrix: Z = XU
- from X
- they already captured a large amount of variation in the original data.

The score matrix has the **same amount of variance** as the original data matrix Columns of score matrix successively inherit the maximum possible variance

This is why the first few columns of the score matrix can be used for visualisation:

PCA visualisation

	рса			
	pc1	pc2	pc3	pc4
start -	0.44	0.78	0.29	-0.28
finish -	0.14	0.66	0.58	-0.43
mat -	-0.8	-0.41	0.35	-0.19
inns -	-0.88	-0.28	0.3	-0.17
no -	-0.01	-0.48	0	-0.72
runs -	-0.98	0.1	0.01	-0.03
hs -	-0.87	0.27	-0.17	0.1
ave -	-0.72	0.31	-0.41	-0.04
bf -	-0.97	0.07	-0.06	-0.08
sr-	-0.05	0.39	0.42	0.37
centuries -	-0.87	0.14	-0.23	-0.05
half_cent -	-0.89	0.25	0.03	-0.03
ducks -	-0.14	-0.57	0.61	0.2
fours -	-0.98	0.1	-0.02	-0.02
sixes -	-0.6	0.02	0.41	0.37

original

tSNE: t-distributed stochastic neighbor embedding

- tSNE was invented in 2008 as a non-linear alternative of PCA
- Unlike PCA, the output matrix of tSNE does not have an interpretation, but its major advantage is in the visualisation
- (Speaking from personal experience) For complex data in my research, tSNE tends to produce more separation of clusters

tSNE visualisation

Points that are close to each other in the plot are also close in the original dimension

tSNE visualisation

In single-cell gene expression data, you can use tSNE to perform dimensional reduction before clustering and construct a trajectory of cell development.

Relationship captured

What is preserved/ minimised between X and Z

Interpretation of output numerical matrix

PCA

tSNE

linear

non-linear

variance

similarity between points

