Introduction

Loading data

We will illustrate the speed of the APES method on the diabetes data from the mplot package. As the main motivation of the APES package is to make computational improvements on the exhaustive search done by the mplot package while maintaining a sensible approximation to the genuine exhaustive search, it is necessary for us to check this is indeed the case.

The diabetes data from the mplot package has a continuous response variable measuring disease progression one year after baseline. In order to illustrate APES, we will dichotomise this response variable by spliting it at the median to create two equally weighted classes and fit a logistic regression model.

diabetes = mplot::diabetes
x = diabetes %>% dplyr::select(-y) %>% as.matrix()
y = ifelse(diabetes$y > median(diabetes$y), 1L, 0L)
diabetes_binarised = data.frame(x, y)
glimpse(diabetes_binarised)
## Rows: 442
## Columns: 11
## $ age <dbl> 59, 48, 72, 24, 50, 23, 36, 66, 60, 29, 22, 56, 53, 50, 61, 34, 47…
## $ sex <dbl> 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, …
## $ bmi <dbl> 32.1, 21.6, 30.5, 25.3, 23.0, 22.6, 22.0, 26.2, 32.1, 30.0, 18.6, …
## $ map <dbl> 101.00, 87.00, 93.00, 84.00, 101.00, 89.00, 90.00, 114.00, 83.00, …
## $ tc  <dbl> 157, 183, 156, 198, 192, 139, 160, 255, 179, 180, 114, 184, 186, 1…
## $ ldl <dbl> 93.2, 103.2, 93.6, 131.4, 125.4, 64.8, 99.6, 185.0, 119.4, 93.4, 5…
## $ hdl <dbl> 38, 70, 41, 40, 52, 61, 50, 56, 42, 43, 46, 32, 62, 49, 72, 39, 70…
## $ tch <dbl> 4.00, 3.00, 4.00, 5.00, 4.00, 2.00, 3.00, 4.55, 4.00, 4.00, 2.00, …
## $ ltg <dbl> 4.8598, 3.8918, 4.6728, 4.8903, 4.2905, 4.1897, 3.9512, 4.2485, 4.…
## $ glu <dbl> 87, 69, 85, 89, 80, 68, 82, 92, 94, 88, 83, 77, 81, 88, 73, 81, 98…
## $ y   <int> 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, …

Performing variable selection on the diabetes data

Fitting the full model

Both APES and mplot were designed to have an easy-to-use user interface where a user can simply supply a glm object and get the analysis results rapidly. We will fit the full model here.

full_model = glm(y ~ ., family = "binomial", data = diabetes_binarised)
summary(full_model)
## 
## Call:
## glm(formula = y ~ ., family = "binomial", data = diabetes_binarised)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.60947  -0.71122  -0.00447   0.77915   2.32805  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.436e+01  3.722e+00  -3.859 0.000114 ***
## age          3.765e-03  1.014e-02   0.371 0.710491    
## sex         -1.120e+00  2.934e-01  -3.816 0.000136 ***
## bmi          1.490e-01  3.582e-02   4.161 3.18e-05 ***
## map          3.974e-02  1.074e-02   3.700 0.000215 ***
## tc          -4.527e-02  3.215e-02  -1.408 0.159085    
## ldl          3.573e-02  3.103e-02   1.151 0.249599    
## hdl         -1.761e-03  4.164e-02  -0.042 0.966266    
## tch          3.128e-02  2.981e-01   0.105 0.916443    
## ltg          2.696e+00  8.877e-01   3.037 0.002391 ** 
## glu          2.691e-04  1.327e-02   0.020 0.983815    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 612.74  on 441  degrees of freedom
## Residual deviance: 418.97  on 431  degrees of freedom
## AIC: 440.97
## 
## Number of Fisher Scoring iterations: 5

Variable selection under 50 bootstrap using APES

apes_result = APES::apes(model = full_model, n_boot = 50)
## No variable size specified, searching all sizes from 1 to p...
apes_result
## Time taken:  0.03299249  minutes 
## Total number of bootstrap APES results:  50

Variable selection under 50 bootstrap using mplot

t1 = Sys.time()

mplot_result = mplot::vis(
  mf = full_model,
  B = 50,
  redundant = FALSE, 
  cores = 1 ## mplot adds a redundant variable by default, we will suppress this
)

t2 = Sys.time()
cat("Time taken: ", as.numeric(difftime(t2, t1, units = "mins")), "minutes")
Morgan-Tatar search since family is non-gaussian.
Time taken:  2.608035 minutes

Looking at the time differences, it is clear that APES is faster. However, it should be noted that APES only computed the best linear model within each model size while mplot performed a genuine exhaustive search across all GLMs. These results are thus not intuitively comparable. However, the results presented in Wang et. al provide some assurance that the results of APES are good approximations to a genuine exhaustive search.

Comparing variable importance plots

One plot that both packages have implemented is the variable importance plot from Murray et. al. (2013). We will make a visual comparison between the two versions below to check if the final interpretations of these plots fit with our expectations.

The variable importance plot shows the stability of each variable as empirical probability of selection against different penalty terms, assuming a general information criterion formulation $-2 + (p + 1) $, where \(\ell\) is the log-likelihood of a model, \lambda is the penalty term and \(p\) is the number of predictors (excluding the intercept term).

From APES:

plot(apes_result, type = "vip")

From mplot:

plot(mplot_result, which = "vip")

Based on the plots above, we see that both methods show similar ordering of the variables as we should expect. As pointed out by the mplot vignette, one of the most interesting feature of this data is the cross-over between some selected variables (variables hdl and tc which cross over after the BIC threshold) which is preserved by the APES package.

Reference

  • Mueller, S. and Welsh, A. H. (2010), On model selection curves. International Statistical Review, 78:240-256. doi: 10.1111/j.1751-5823.2010.00108.x

  • Murray, K., Heritier, S. and Mueller, S. (2013), Graphical tools for model selection in generalized linear models. Statistics in Medicine, 32:4438-4451. doi: 10.1002/sim.5855

  • Tarr G, Mueller S and Welsh AH (2018). mplot: An R Package for Graphical Model Stability and Variable Selection Procedures. Journal of Statistical Software, 83(9), pp. 1-28. doi: 10.18637/jss.v083.i09

  • Wang, K. Y., Tarr, G., Yang, J. Y., & Mueller, S. (2019). Fast and approximate exhaustive variable selection for generalised linear models with APES. Australian & New Zealand Journal of Statistics, 61(4), 445–465. https://doi.org/10.1111/anzs.12276

Session Info

## R version 4.1.1 (2021-08-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15.7
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] forcats_0.5.1   stringr_1.4.0   dplyr_1.0.7     purrr_0.3.4    
##  [5] readr_2.0.1     tidyr_1.1.3     tibble_3.1.4    ggplot2_3.3.5  
##  [9] tidyverse_1.3.1 mplot_1.0.6     APES_1.0.0     
## 
## loaded via a namespace (and not attached):
##  [1] fs_1.5.0             lubridate_1.7.10     RColorBrewer_1.1-2  
##  [4] httr_1.4.2           rprojroot_2.0.2      tools_4.1.1         
##  [7] backports_1.2.1      doRNG_1.8.2          bslib_0.3.0         
## [10] utf8_1.2.2           R6_2.5.1             DBI_1.1.1           
## [13] colorspace_2.0-2     withr_2.4.2          tidyselect_1.1.1    
## [16] compiler_4.1.1       cli_3.0.1            textshaping_0.3.5   
## [19] rvest_1.0.1          xml2_1.3.2           desc_1.3.0          
## [22] labeling_0.4.2       sass_0.4.0           scales_1.1.1        
## [25] pkgdown_1.6.1.9001   systemfonts_1.0.2    digest_0.6.27       
## [28] rmarkdown_2.10       pkgconfig_2.0.3      htmltools_0.5.2     
## [31] parallelly_1.27.0    highr_0.9            dbplyr_2.1.1        
## [34] fastmap_1.1.0        rlang_0.4.11         readxl_1.3.1        
## [37] rstudioapi_0.13      shiny_1.6.0          farver_2.1.0        
## [40] jquerylib_0.1.4      generics_0.1.0       jsonlite_1.7.2      
## [43] gtools_3.9.2         magrittr_2.0.1       leaps_3.1           
## [46] Matrix_1.3-4         Rcpp_1.0.7           munsell_0.5.0       
## [49] fansi_0.5.0          lifecycle_1.0.0      furrr_0.2.3         
## [52] stringi_1.7.4        yaml_2.2.1           plyr_1.8.6          
## [55] grid_4.1.1           parallel_4.1.1       listenv_0.8.0       
## [58] promises_1.2.0.1     ggrepel_0.9.1        shinydashboard_0.7.1
## [61] crayon_1.4.1         lattice_0.20-44      haven_2.4.3         
## [64] splines_4.1.1        hms_1.1.0            knitr_1.33          
## [67] pillar_1.6.2         rngtools_1.5         reshape2_1.4.4      
## [70] codetools_0.2-18     reprex_2.0.1         glue_1.4.2          
## [73] evaluate_0.14        modelr_0.1.8         vctrs_0.3.8         
## [76] tzdb_0.1.2           httpuv_1.6.2         foreach_1.5.1       
## [79] cellranger_1.1.0     gtable_0.3.0         future_1.22.1       
## [82] assertthat_0.2.1     cachem_1.0.6         xfun_0.25           
## [85] mime_0.11            xtable_1.8-4         broom_0.7.9         
## [88] later_1.3.0          ragg_1.1.3           survival_3.2-11     
## [91] iterators_1.0.13     memoise_2.0.0        globals_0.14.0      
## [94] ellipsis_0.3.2